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Exploration Program
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Lunar Mobility
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Lunar Surface Systems (Mobility)
Pressurized Rover
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Preliminary Power Requirements:
Safe, reliable operation
> 150 Wh/kg at battery level

500 cycles
Operation Temp: 0 to 30 C
Maintenance-free operation
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Lunar Surface Systems (Mobility)
Lunar Outpost

Scenario-Based Planning:
Rechargeable batteries for mobility systems and/or

portable utility pallet and/or power & support unit

Crew Mobility Chassis Specifications
• 969 kg dry vehicle mass
• >100 km range, upgradable with PUPS
• 0-5 kph low gear, 0-20 kph high gear
• 20 kVVh onboard energy storage (Li-ion battery)
• 5.9 kW peak power, 1.15 kW average power and 12!

VV standby power.
• Nominal drive time is 87 hours and stand-by time is

800 hours.

Portable Utility Pallet
• Logistics: 25 kg Oxygen, 90 kg Water, 90 kg

Wastewater
• Power Generation: 4.4-kW. 5.5-m diam Orion-class

solar array
• Energy Storage: 10 kVVh (Li-ion batteries
• Mass: 705.9 kg (dry), 963.4 kg (wet)

Outpost Power Needs
' — 20-40 kW lunar daytime power level

—10-20 kVV lunar nighttime power level
• Modular systems with 5-10 year calendar life
r` Reliable, human-rated operation in thermal,

dust, launch/landing, vacuum environments
Low mass and volume
Autonomous control and operation

Battery Needs
' 10-hour discharge and 10-hour charge
• 2000 discharge/recharge cycles

Temperature controlled to 0 to +30 °C
5 year calendar life
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Altair Lunar Lander Ascent Module
Ascent Module:

• Secondary Batteries are considered critical for the Ascent
Stage.

• LDAC-3 recommended a 121.6 kg, 22.7 kVV-hour primary
battery, sized for an ascent underburn.

• Key risks associated with primary batteries:

1.Inability to verify proper battery function in-flight before
critical use,

2.Probable large mass impact when peak/average power
ratios defined;

3.Altair need for power in excess of the 1500 W power
transfer requirement from Orion & EDS identified in LDAC3

• Rechargeable batteries can eliminate these risks; but mass
should not increase appreciably

— 160 — 200 VV-hr/kg at the battery level may be sufficient.

— Nominally ten recharge cycles are required with 1.67 kW
nominal power and 2 kW peak power, operating for 7 hours

Ascent

continuously.	 Module

— Human-safe operation from 0 to +30 °C and zero to 1g.
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Extravehicular Activity (EVA) Suit
"nmr GVD Ind ('_nnfin"r!ntinn

Enhanced Helmet Hardware: 	 u
• Lighting	

Power to support 8-hour EVA provided b batter in Portable Life Support System• Heads-Up-Display	 pp	 p	 y	 Y	 pp	 y
• Soft Upper Torso (SUT) Integrated Audio

•	 Preliminary battery design goals;
Power / Communications,
Avionics & Informatics (CAI): 	 — Human-safe operation

Tj	

• Cmd/Cntrl/Comm Info (C31)	 — 144 W (average) and 233 W (peak) power
Processing
• Expanded set of suit sensors
• Advanced Caution & Warning
• Displays and Productivity

Video:	 Enhancements
Suit Camera

Assumes I% connector loss and 30% margin for groMh in paver requirements

— No more than 5 kg mass and 3 liter volume

— 100 cycles (use every other day for 6 months)

— 8-hour discharge to at most 85% depth-of-discharge

— Temperature controlled to 0 to +30 °C

PLSS:
Fan, pump, ventilation	 Secondary batteries are considered critical for EVA Suit 2.
subsystem processor; Heater,
controllers, and valve

Current Suit Batteries:
EMU: 20.5 V; min 26.6 Ah (7 hr EVA), 9A peak, 5 yr,

Enhanced Liquid	 <15.5 Ibs, 30 cycles
Cooling Garment: SAFER-42 V; 4.2 Ah in emergency only)I	 ^	 (	 9	 Y• Bio-Med Sensors

	

	 REBA- 12.5 V, 15 Ah, (7 hr EVA); 5 yr, -6 Ibs
EHIP:6 V, 10.8 Ah; (7 hr EVA); 5 yr, -1.8 Ibs
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Exploration Technology Development Program (ETDP)
Energy Storage Battery Development Schedule for Constellation

PDR: Preliminary Design Review
CDR: Critical Design Review
SRR: System Requirements Review
TRL: Techne logy Rea d i ness Levfal

TRL 4 — components integrated but not tested

Tech TRL 5 — Performance testing complete
Infusion	 PDR TRL 6 — Environmental testing complete

LSS

S R	 PDR CDR
EVA (Suit2 Gonfig) - f
PLSS —6 months
earlier

TP _SRR_ P DR GDR
Altair Lander

TRL4	 TRL	 ; f

Batteries Cell	 Cell	 Battery

High Energy

Ultra High Energy
TRL4	 TRL6 8:,,,^tery
Cell	 Cell
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Key Performance Parameters for Battery Technology Development
Customer Need	 Performance	 State-of-the-Art	 Current Value	 Threshold	 Goal

Parameter	 I	 I Value

I
Safe, reliable
operation

Specific energy
Lander:

150— 210 Wh/kg

10 cycles

Rover:

150 — 200 Wh/kg

EVA:

200— 300 Wh/kg

100 cycles

Energy density
Lander: 311 Wh/I
Rover: TBD
EVA: 240 — 400 W h/I

Operating
environment
0°C to 30°C, Vacuum

No fire or flame

Battery-level
specific energy*

Cell-level specific
energy

Cathode-level
specific capacity
Li(Li,NiMn)OZ

Anode-level
specific capacity

Battery-level
energy density

Cell-level energy
density

Operating
temperature

Instrumentation/control-
lers used to prevent
unsafe conditions.
There is no non-
flammable electrolyte in
SOA

90 W h/kg at C/10 & 30 C
83 W h/kg at C/10 & 0 C
(MER rovers)

130 Wh/kg at C/10 & 30 C
118 Wh/kg at C/10 & 0 C

140 — 150 mAh/g typical

320 mAh/g (MCMB)

250 W h/I

320 WWI

-20°C to +40°C

Preliminary results
indicate a moderate
reduction in the
performance with flame
retardants and non-
flammable electrolytes

130 Wh/kg at C/10 & 30 C
120 Wh/kg at C/10 & 0 C

150 Wh/kg at C/10 & 0°C

Li(Lio 1^0,25Mno.5002-
240 mAh/g at C/10 & 25°C
Li ( Lia.Ao 1.3WO.54Coo.13)02
250 mAh/g at C/10 & 25°C
200 mAh/g at C/10 & 0°C

320 mAh/g MCMB
450 mAh/g Si composite

n/a

n/a

-50°C to +40°C

Benign cell venting
without fire or flame and
reduce the likelihood and
severity of a fire in the
event of a thermal
runaway

135 Wh/kg at C/10 & 0 C
"High-Energy"**
150 Wh/kg at C/10 & 0 C
"Ultra-High Energy"**

165 Wh/kg at C/10 & 0 C
"High-Energy"
180 Wh/kg at C/10 & 0 C
"Ultra-High Energy"

260 mAh/g at C/10 & 0 C

270 Wh/I "High-Energy"
360 Wh/I "Ultra-High"

385 Wh/I "High-Energy'
460 Wh/I "Ultra-High"

0°C to 30°C

Tolerant to electrical and
thermal abuse such as
over-temperature, over-
charge, reversal, and
external short circuit with
no fire or flame

150 Wh/kg at C/10 & 0 C
"High-Energy"
220 Wh/kg at C/10 & 0 C
"Ultra-High Energy"

180 Wh/kg at C/1 0 & 0 C
"High-Energy"
260 Wh/kg at C/10 & 0 C
"Ultra-High Energy"

280 mAh/g at C/10 & 0 C

320 Wh/I "High-Energy'
420 Wh/I "Ultra-High"

390 Wh/I "High-Energy'
530 Wh/I "Ultra-High"

0°C to 30°C

600 mAh/g at C/10 & 0 C 11000 mAh/g at C/10 0 C
with Si composite	 with Si composite

Assumes prismatic cell packaging for threshold values. Goal values include lightweight battery packaging.
* Battery values are assumed at 100% DOD, discharged at C/10 to 3.0 volts/cell, and at 0 0C operating conditions
** "High-Energy' 	 = Exploration Technology Development Program cathode with MCMB graphite anode

"Ultra-High Energy" = Exploration Technology Development Program cathode with Silicon composite anode 	 Revised 06/02/2008



ETDP Li-ion Cell Development

• Component-level goals are being addressed through a
combination of NASA in-house materials development efforts, NASA
Research Announcement contracts (NRA), and grants

• Materials developed will be delivered to NASA and screened for
their electrochemical and thermal performance, and compatibility
with other candidate cell components

• Other activities funded through NASA can be leveraged — NASA
Small Business Innovative Research (SBIR) Program and Innovative
Partnership Program (IPP)

• Leveraging off other government programs (DOD, DOE) for
component-level technology

• Leveraging off other venues through Space Act Agreements (SAA)
that involve partnerships with industry partners such as Exxon; non-
profit organizations such as Underwriters Laboratory (UL), etc.
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Energy Storage Project Cell Development for Batteries

Li(LiNMC)0,
NASA Cathode

High	 Ultra-High
Energy	 Energy
Cell	 Cell

® Anode (commercial)
Anode (NASA)

o Cathode (NASA)

0 Electrolyte (NASA)

® Separator (commercial)

Safety devices (NASA)
Incorporated into
NASA anode/cathode

Conventional
	

Si-composite
Carbonaceous Anode
	 NASA Anode

"High Energy" Cell
Baseline for EVA and Rover
Lithiated-mixed-metal-oxide cathode / Graphite anode
Li(LiNMC)O 2 / Conventional carbonaceous anode
150 Wh/kg (100% DOD) @ battery-level O OC C/10
80% capacity retention at 2000 cycles

"Ultra-High Energy" Cell
Upgrade for EVA and Altair, possibly Rover
Lithiated-mixed-metal-oxide cathode / Silicon composite anode
Li(LiNMC)O 2 / silicon composite
220 Wh/kg (100% DOD) @ battery-level 0°C C/10
80% capacity retention at -200 cycles

J. Jeevarajan, Ph.D. / NASA-JSC
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Anode Development
Led by NASA GRC (William Bennett, ASRC)

• Goal: 1000 mAh/g at C/10 (10 hour discharge rate) and 0°C
— Over 3 times the capacity of SOA Li-ion anodes
— Threshold value = 600 mAh/g at C/10 and 0°C

Technology	 Current Approaches to AddressChallenges	 0
Minimize volume	 -Pursuing various approaches to optimize the anode structure
expansion during	 to accommodate volume expansion of the silicon
cycling	 •Nanostructured Si composite absorbs strain, resists active

particle isolation on cycling
-Incorporation of elastic binders in Si —graphite and Si-C
matrices
-Improvement of mechanical integrity by fabricating
structure to allow for elastic deformation

Minimize irreversible	 -Protection of active sites with functional binder additives
capacity loss	 •Pre-lithiation approaches are possible

• Nanostructured Si resists fracture and surface renewal

250 cycles	 Loss of contact with active particles reduces cycle life.
Addressing volume changes and improvement of mechanical
integrity will improve cycle life
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Cathode Development
Led by R. Bugga (JPL)

• Goals:
— Specific capacity of 280 mAh/g at C/10 and 0°C to 3.0 V
— High voltage operation to 4.8 V
— Improved thermal stability over conventional U-ion cathodes

Technology Challenges OR-	 Current Project Approaches to Address

-Vary stoichiometry to determine optimum chemical formulation

High specific capacity at 	 -Reduce particle size

practical discharge rates	 -Experiment with different synthesis methods to produce materials with
physical properties such that their specific capacity is retained on
production scale

-Vary cathode synthesis method to optimize properties that can:
-Improve energy density
-Improve ability to cast cathode powders

Low volume per unit mass	 -Facilitate incorporation of oxide coatings, which have the
potential to increase rate capability and reduce capacity fade to
extend cycle life

-Surface modification via coatings to improve cathode-electrolyte
Minimize 1 St cycle	 interfacial properties
irreversible capacity loss	 -Improves capacity retention
and irreversible oxygen loss 	 -Reduces capacity fade
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Safety Component Development
Led by NASA JSC (Judy Jeevarajan)

• Development of internal cell materials (active or inactive) designed to
improve the inherent safety of the cell
• Approach 1: Develop a high-voltage stable (phosphate type) coating on cathode

particles to increase the safe operating voltage of the cell and reduce the thermal
dissipation by the use of a high-voltage stable coating material. (Nanosized
material)

PeakX
J

Approach 2: Develop a composite thermal switch to shutdown cell reactions safely
i minn rnatinnc nn the ri irrAnt rnil ector substrates (nanoparticle metals)
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SBIR
Phase I:

TDA Research: Si/C composite anode (nanomaterials)

TH Chem: Improved cathodes — Polymer/S type

Phase II: Yardney Technical Products

• In Phase I, high-rate capability with Cu nanorod and Fe 3O4 anodes
was demonstrated.

• Phase II has several facets:

— Baseline Li titanate anode (NTP) with LiN'Co0 2 cathode

— High voltage cathode LiCoPO4

— Nanoengineered anode of Fe 3 O4 with Cu nanorods

— Carbon nanotubes (CNT) with Al current collector and Fe3O4
anode

• 6 Other SBIR Phase I at other Centers

• FY10: Reviewed nanotechnology related proposals for both
batteries and capacitors.
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Summary

• Exciting Future Programs ahead for NASA
• Power is needed for all Exploration vehicles and for the

missions.
• For long term missions as in Lunar and Mars programs,

safe, high energy/ultra high energy batteries are required.
• Nanomaterial usage also increases the energy density of

the cells apart from increasing the power density.

J. Jeevarajan, Ph.D. / NASA-JSC
18



Acknowledgment

Coworkers in Power Systems Branch

19
J. Jeevarajan, Ph.D. / NASA-JSC


